Optimizing Treatment for Gram-Negative Bacteremia

Alison Rydell, PharmD PGY1 Pharmacy Resident St. Luke's Hospital December 15, 2022

Objectives

- 1. Identify the most common causative organisms of Gram-negative bacteremia and current guideline recommendations
- 2. Evaluate when it may be appropriate to transition from IV to oral therapies
- 3. Describe appropriate oral therapies for Gram-negative bacteremia

Abbreviations

BA: bioavailability

- BL: beta-lactam
- BSI: bloodstream infection

CAE: chromosomally-mediated AmpC-producing Enterobacterales (*Enterobacter, Serratia, Citrobacter,* and *Morganella*)

CLABSI: central line-associated bloodstream infection

- FQ: fluoroquinolones
- GI: gastrointestinal

GNB: Gram-negative bacteremia

- IA: intra-abdominal
- IV: intravenous

MDR: multi-drug resistant

MIC: minimum inhibitory concentration

PO: per os, oral (by mouth)

SMX/TMP, S/T: sulfamethoxazole/trimethoprim

SSTI: skin and soft tissue infection

UTI: urinary tract infection

Epidemiology of Gram-negative bacteremia^{1,2}

- Gram-negative bacilli cause 25-50% of all bloodstream infections
- Primary sources: urinary (51%), abdominal (11%), respiratory (11%)
- Microbiology: Escherichia coli (47.4%), Klebsiella pneumoniae (14.7%), Pseudomonas aeruginosa (9.2%), Enterobacter spp. (6.5%), Proteus mirabilis (4.2%)

Guideline-recommended treatment options³

Organism	Preferred	Alternatives
E. coli, K. pneumoniae, ESBL-negative	IV 3 rd generation cephalosporin	Ciprofloxacin or aztreonam
<i>E. coli, K. pneumoniae,</i> ESBL-positive	Carbapenem	Ciprofloxacin or aztreonam
Enterobacter spp.	Carbapenem	Ciprofloxacin or cefepime*
Acinetobacter spp.	Ampicillin/sulbactam or carbapenem	-
P. aeruginosa	4 th generation cephalosporin or carbapenem or piperacillin/tazobactam +/- aminoglycoside	-

*Cefepime is preferred when MIC < 4

Guidance for treatment duration^{3,4}

- Infectious Diseases Society of America
 - No consensus statement
 - o Recommends 7-14 days for catheter-associated infections
- National Action Plan for Combating Antibiotic-Resistant Bacteria
 - No additional guidance and identifies this area as a need for further research

Inappropriate treatment duration impact⁵

- Inadequate duration: clinical failure, relapsing infection, development of resistance
- Excess duration: adverse effects from antibiotics, *C. difficile* infections, resistance in off-target pathogens

What is the optimal treatment duration for Gram-negative bacteremia?

Li, et al meta-analysis (2021)⁶

- Purpose: compare clinical outcomes of short courses versus long courses of antibiotics for uncomplicated Gram-negative bacteremia
- Six studies (2,689 patients) included
- Primary outcomes:
 - 30-day all-cause mortality
 - o 30-day recurrent bacteremia
- Secondary outcomes:
 - Primary outcomes at 90 days
 - o Adverse events
 - C. difficile infections
 - Emergence of resistance
- Study demographics

Study	Short-course (N)	Long-course (N)	Main pathogen	Main source
Von Dach (2021)	7 days (169)	14 days (165)	E. coli (74%)	Urinary (67%)
Yahav (2019)	7 days (306)	14 days (298)	E. coli (63%)	Urinary (68%)
Sousa (2018)	7-10 days (168)	>10 days (232)	E. coli (57%)	Urinary (52%)
Fabre (2019)	7-11 days (72)	>11 days (179)	P. aeruginosa (100%)	Urinary (30%)
Chotiprasitsakul (2018)	6-10 days (385)	11-16 days (385)	E. coli (47%)	Urinary (36%)
Park (2013)	7-10 days (170)	>10 days (170)	Klebsiella spp. (30%)	Central-line (62%)

- Inclusion and exclusion criteria
 - Inclusion: Gram-negative bacilli identified in at least one blood culture, uncomplicated infection
 - Exclusion: deep-seated infections (e.g. undrained abscess, endocarditis, osteomyelitis), polymicrobial infections, immunocompromised patients, *Brucella* or *Salmonella* infections, inappropriate antibiotic choice
- Median treatment durations

Study	Short-course Median Duration	Long-course Median Duration
Von Dach (2021)	7 days	14 days
Yahav (2019)	7 days	14 days
Sousa (2018)	10 days	14 days
Fabre (2019)	9 days	16 days
Chotiprasitsakul (2018)	8 days	15 days
Park (2013)	10 days	14 days

Results

Outcome	Number of Patients	RR (95% CI)	P-value
30-day all-cause mortality	2,689	0.85 (0.65-1.13)	0.26
30-day recurrent bacteremia	2,689	1.07 (0.68-1.67)	0.78
90-day all-cause mortality	921	0.84 (0.57-1.24)	0.47
90-day recurrent bacteremia	1,316	0.98 (0.50-1.89)	0.77
Adverse events	933	1.14 (0.89-1.45)	0.62
C. difficile infections	2,043	0.86 (0.40-1.86)	0.61
Resistance development	1,374	1.19 (0.66-2.14)	0.12

Conclusions for optimal treatment duration

- For patients with uncomplicated Gram-negative bacteremia, it is reasonable to consider a shorter duration (7-10 days), as opposed to longer durations (> 14 days)
- Consider a longer duration if:
 - Deep-seated infection
 - Immunocompromised patient
 - Polymicrobial infection
 - Unknown focus of infection
 - Source control not feasible

Can patients be transitioned to oral antibiotics?

Rationale for switching to oral therapy⁷

- Decreased hospital length of stay
- Decreased costs
- Less likelihood of line-associated complications (infections, phlebitis)

Considerations for switching to oral therapy⁸

• Clinically improving, source control, clinical efficacy data, drug bioavailability, dosing, drug interactions, adverse event profile

Current practice⁹

- Survey of 277 infectious disease specialists
- Transition from IV to PO:
 - 57% transition from IV to PO in all cases
 - 40% transition from IV to PO only for infections from certain sources
 - 3% treat with IV only
 - Willingness to transition according to treatment source: urine (92%), SSTI (90%), pneumonia (78%), IA (75%), line-associated (64%)
- Minimum duration of IV therapy: 5 days

Tamma, et al. retrospective trial (2019)¹⁰

- Study components
 - Objective: compare 30-day mortality rates for patients with early step-down from IV to PO vs. continued IV therapy for Gram-negative bacteremia
 - Study design: retrospective, propensity score-matched cohort
 - Inclusion: monomicrobial Enterobacterales bacteremia, source control, able to take other oral medications, clinical improvement by day 5

- Exclusion: oral antibiotics from day 1, inappropriate antibiotics within first 24 hours, less than 7 days or greater than 16 days of antibiotics
- Sample size: 2,161 (1,478 in propensity score-matched cohort)
- Intervention: transitioning to oral antibiotics at day 5 vs. continuing IV antibiotics
- Outcomes: 30-day all-cause mortality, 30-day recurrent bloodstream infection, length of hospitalization
- Cohort trends
 - Group that was transitioned to PO was less likely to require ICU level care, less likely to be immunocompromised or neutropenic, and less likely to receive combination antibiotics therapy for > 48 hours
- Infection sources

Source	Oral therapy (N=739) N (%)	IV therapy (N=739) N (%)
Urinary	295 (39.9)	299 (40.5)
Gastrointestinal	152 (20.6)	145 (19.6)
Catheter-associated	135 (18.3)	137 (18.5)
Biliary	103 (13.9)	107 (14.5)
Pulmonary	29 (3.9)	29 (3.9)
Skin and soft tissue	22 (3.0)	19 (2.6)

Microbiology

Bacteria	Oral therapy (N=739) N (%)	IV therapy (N=739) N (%)
Escherichia coli	336 (45.5)	309 (41.8)
Klebsiella pneumoniae	237 (32.0)	268 (36.2)
Enterobacter spp.	91 (12.3)	82 (11.1)
Proteus mirabilis	25 (3.4)	40 (5.4)
Serratia marcescens	22 (3.0)	19 (2.6)
Citrobacter spp.	16 (2.2)	11 (1.5)
Klebsiella oxytoca	12 (1.6)	10 (1.3)

- Results
 - Median duration of total antibiotic therapy: 14 days

Outcome	Oral therapy (N=739)	IV therapy (N=739)	HR (95% CI)
30-day all-cause mortality	97 (13.1%)	99 (13.4%)	1.03 (0.82-1.30)
Recurrent BSI within 30 days	6 (0.8%)	4 (0.5%)	0.82 (0.33-2.01)
Median time to hospital discharge (days)	5 (IQR 3-8)	7 (IQR 4-14)	0.98 (0.91-1.00)

- Conclusions
 - o Clinical outcomes are not worse for patients who transition to oral therapy
 - o Transition to oral therapy is associated with shorter hospital length of stay

Transition to PO for GNB from urinary source

- Rieger, et al. (2017)¹¹
 - Sample size: 241
 - Primary outcome: composite of clinical failure (escalation to IV from PO, readmission for same pathogen, change in antibiotic due to clinical worsening) within 30 days
 - Mediation duration of IV therapy: 4 days
 - Results:
 - Treatment failure in IV only: 4/106 (3.8%)
 - Treatment failure in IV/PO: 11/135 (8.2%)
 - p=0.19
- Thurber, et al. (2019)¹²
 - Sample size: 346
 - Primary outcome: composite of all-cause mortality and recurrent BSI within 21 days
 - Median duration of IV therapy: 3 days
 - Results:
 - Treatment failure in IV only: 2/82 (2.4%)
 - Treatment failure in IV/PO: 4/264 (1.5%)
 - HR 0.62 (95% CI 0.11-3.39), p=0.58
 - No deaths in either group

IV to PO transition conclusions

- Patients should be transitioned to PO antibiotics after 3-5 days of IV therapy
- Why?
 - Low rates of treatment failure with transition to oral antibiotics
 - Higher incidence of line-associated adverse effects with continued IV therapy

Which oral antibiotics are effective for treating Gram-negative bacteremia? Oral therapy options¹³

- Fluoroquinolones: highest bioavailability (> 95%)
 - Levofloxacin ~99%, ciprofloxacin ~70%
- Sulfamethoxazole/trimethoprim: moderate bioavailability (75-94%)
- Beta-lactams: lowest bioavailability (< 75%)

Bioavailability of oral beta-lactams¹⁴

Antibiotic	Bioavailability (%)	Protein binding (%)
Amoxicillin	74-92	20
Amoxicillin-clavulanate	60-85	20
Cephalexin	90-100	6-15
Cefaclor	52-95	25
Cefprozil	71-95	36
Cefuroxime	30-52	33-50
Cefdinir	21-25	60-70
Cefpodoxime	29-53	22-33

Antibiotic	Dosing Regimen	Maximum MIC allowing for target obtainment	Highest frequency for wild-type MIC for <i>E. coli</i>
A many inciding	500 mg Q8H	0.5 mg/L	4 mg/L
Amoxicillin	1000 mg Q8H	1 mg/L	4 mg/L
Amoxicillin-clavulanate	875 mg Q8H	0.5 mg/L	4 mg/L
Conholovin	500 mg Q6H	2 mg/L	4 mg/L
Cephalexin	1000 mg Q6H	4 mg/L	4 mg/L
Cefaclor	500 mg Q6H	0.5 mg/L	1 mg/L
Cefpodoxime	400 mg Q12H	0.25 mg/L	0.5 mg/L

Proposed beta-lactam dosing for Gram-negative bacteremia¹⁴

Kutob, et al. retrospective trial (2016)¹³

- Objective: identify risk factors for treatment failure in 362 patients who received oral antibiotics for GNB
- Antibiotics

Bioavailability	Antimicrobial Agent	N (%)
High (<u>></u> 95%)	Levofloxacin	106 (29)
Moderate (75-94%)	Ciprofloxacin	151 (42)
woderale (75-94%)	SMX/TMP	28 (8)
Low (< 75%)	Beta-lactam	77 (21)

Microbiology

Bacteria	High BA (N=106)	Moderate BA (N=179)	Low BA (N=77)
Escherichia coli	68 (64)	115 (64)	60 (78)
Klebsiella spp.	14 (13)	25 (14)	10 (13)
Proteus mirabilis	7 (7)	9 (5)	4 (5)
Pseudomonas aeruginosa	1 (1)	12 (7)	0 (0)
CAE	13 (12)	13 (7)	2 (3)
Other	3 (3)	5 (3)	1 (1)

- Results
 - Treatment failure at 90 days: 27/362 (7.4%)
- Risk factors for treatment failure

Risk factor	HR (95% CI)	P-value
Diabetes	1.27 (0.58-2.71)	0.54
End-stage renal disease	1.95 (0.46-5.58)	0.32
Liver cirrhosis	6.52 (2.18-15.91)	0.002
Immunocompromised	3.15 (1.23-7.11)	0.02
Urinary source	0.56 (0.26-1.25)	0.15
Pseudomonas or CAE	1.63 (0.48-4.25)	0.39
Moderate BA antibiotic	5.38 (1.53-34.04)	0.006
Low BA antibiotic	6.41 (1.65-42.03)	0.006

• Antibiotic route and duration

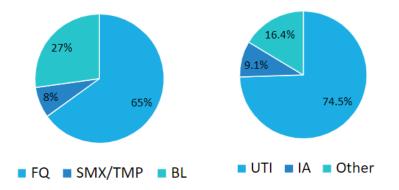
	High BA (N=106)	Moderate BA (N=179)	Low BA (N=77)
Duration of IV therapy, days (mean <u>+</u> SD)	4.4 <u>+</u> 2.8	4.8 <u>+</u> 2.5	4.8 <u>+</u> 2.2
Total duration of antibiotic therapy, days (mean <u>+</u> SD)	13.2 <u>+</u> 5.1	14.2 <u>+</u> 6.1	13.9 <u>+</u> 5.3

• Oral antibiotic regimens

BA	Antimicrobial agent	Ν	Most common oral regimens	N (%)
Lliah	Loveflevesia	106	500 mg q24h	51 (48)
High	Levofloxacin		750 mg q24h	35 (33)
	Ciproflovacia	151	500 mg q12h	127 (84)
Moderate	Ciprofloxacin		750 mg q12h	11 (7)
	SMX/TMP	28	600/160 mg q12h	28 (100)
	Amovicillin / dovulanato	30	875/125 mg q12h	21 (70)
	Amoxicillin/clavulanate		500/125 mg q8h	9 (30)
	Amoxicillin	12	500 mg q8h	10 (83)
Low	Cephalexin	16	500 mg q6h	9 (56)
	Cefuroxime	8	500 mg q12h	8 (100)
	Cefdinir	7	300 mg q12h	7 (100)
	Cefaclor	3	250 mg q8h	3 (100)
	Cefpodoxime	1	200 mg q12h	1 (100)

- Conclusions:
 - o Risk of treatment failure increases with lower bioavailability antibiotics
 - Oral antibiotics for GNB may not be appropriate for immunocompromised patients or those with liver impairment

Problems with fluoroquinolones¹⁵


- Increasing rates of resistance
- Warnings and side effects:
 - C. difficile infections
 - Tendinitis and tendon rupture
 - Worsening of symptoms in patients with myasthenia gravis
 - Irreversible peripheral neuropathy
 - Anxiety, depression, altered mental status
 - o QT prolongation

Punjabi, et al. meta-analysis (2019)¹⁶

- Purpose: compare oral therapies SMX/TMP, fluoroquinolones, and beta-lactams for GNB
- Eight studies (2,289 patients) included
- Primary outcomes:
 - All-cause mortality
 - o Infection recurrence

• Study demographics

Study	Patient N and regimens	Infection source	Follow-up period (d)
Kutob (2016)	N=362 FQ=257, S/T=28, BL=77	UTI (70.2%)	90
Sessa (2018)	N=208 FQ=49, S/T=8, BL=151	UTI (77.8%) IA (16.3%)	30
Rieger (2018)	N=114 FQ=74, S/T=10, BL=30	UTI (100%)	30
Mercuro (2018)	(2018) N=224 UTI (7 FQ=140, BL=84 IA (30
Fong (2018)	N=173 FQ=114, BL=59		
Gumbleton (2018)	N=205 FQ=108, S/T=11, BL=86	UTI (80%) IA (11%)	30
Tamma (2019)	N=739 FQ=518, S/T=99, BL=122	UTI (40.2%) IA (20.1%) CLABSI (18.4%)	30
Thurber (2019)	N=264 FQ=229, S/T=21 BL=14	UTI (100%)	21

- Results
 - Median duration of IV therapy: 3-5 days
 - Total duration of antibiotic therapy (IV + PO): 13.6-16 days

Study	All-cause mortal	ity (N <i>,</i> %)	Recurrence of infection (N, %)		
	FQ/SMX-TMP	BL	FQ/SMX-TMP	BL	
Kutob (2016)	9/285 (3.2)	3/77 (3.9)	12/285 (4.2)	7/77 (9.1)	
Sessa (2018)	0/57 (0)	0/151 (0)	3/57 (5.3)	14/151 (9.3)	
Rieger (2018)	2/84 (2.4)	0/30 (0)	2/82 (2.4)	1/30 (3.3)	
Mercuro (2018)	1/140 (0.7)	1/84 (0.1)	3/140 (2.1)	5/84 (5.9)	
Fong (2018)	4/114 (3.5)	1/59 (1.7)	5/114 (4.4)	4/59 (6.8)	
Gumbleton (2018)	1/119 (0.8)	2/86 (2.3)	0/119 (0)	3/86 (3.5)	
Tamma (2019)	68/617 (11)	15/122 (15)	4/617 (0.6)	0/122 (0)	
Thurber (2019)	0/250 (0)	0/14 (0)	4/250 (1.6)	0/14 (0)	

- Conclusions:
 - \circ \quad Mortality rate and infection recurrence is low
 - o Mortality rate and recurrence risk is lower with higher bioavailability antibiotics
 - Total durations for antibiotics with transition to PO is long (13-16 days)

Sutton, et al. retrospective trial (2020)¹⁷

- Objective: compare oral BL vs FQ or SMX/TMP for definitive treatment of GNB from urinary source
- Study design: retrospective cohort
- Inclusion: monomicrobial Enterobacterales bacteremia, received 1-5 days of IV antibiotics and transitioned to oral by day 6
- Exclusion: prior Enterobacterales bacteremia in previous 365 days, polymicrobial bacteremia, urologic abscess or prostatitis within 90 days of enrollment
- Sample: 4,089
- Outcomes: 30-day all-cause mortality, 30-day recurrent BSI
- Results:

	FQ, SMX/TMP (N=3134) N (%)	BL (N=955) N (%)	aRD, % (95% CI)	aRR, % (95% Cl)
30 d composite	94 (3.0)	42 (4.4)	0.99 (-0.42 to 2.40)	1.31 (0.87 to 1.95)
Mortality	82 (2.6)	29 (3.0)	0.06 (-1.13 to 1.26)	1.02 (0.67 to 1.56)
Recurrent BSI	12 (0.4)	14 (1.5)	1.03 (0.24 to 1.82)	3.43 (0.42 to 27.90)
90 d composite	238 (7.6)	96 (10.1)	1.81 (-0.24 to 3.87)	1.23 (0.96 to 1.56)
Mortality	208 (6.6)	75 (7.9)	0.68 (-1.16 to 2.52)	1.10 (0.85 to 1.42)
Recurrent BSI	34 (1.1)	25 (2.6)	1.38 (0.30 to 2.47)	2.15 (0.92 to 5.01)

• Primary outcomes for BL regimens:

Antibiotic	Patients N (%)	Recurrent BSI N (%)	Mortality N (%)	Dose (mg)	Patients N (%)
Amoxicillin/ clavulanate	251 (26.3)	4/251 (1.6)	13/251 (5.2)	875/125 BID 500/125 BID 500/125 BID	161/251 (64.1) 46/251 (18.3) 28/251 (11.2)
Cephalexin	245 (25.7)	0 (0)	5/245 (2.0)	500 QID 500 BID 500 TID	115/245 (46.9) 57/245 (23.3) 47/245 (19.2)
Cefpodoxime	243 (25.4)	4/243 (1.6)	8/243 (3.3)	200 BID 400 BID	154/243 (63.4) 47/243 (19.3)
Amoxicillin	63 (6.6)	3/63 (4.8)	1/63 (1.6)	500 TID 500 BID	44/63 (69.8) 9/63 (14.3)
Cefdinir	35 (3.7)	1/35 (2.9)	0 (0)	300 BID	33/35 (94.3)

• Primary outcomes for FQ or SMX/TMP:

Antibiotic	Patients N (%)	Recurrent BSI N (%)	Mortality N (%)	Dose (mg)	Patients N (%)
Cincefloyeein 244				500 BID	2003/2447 (81.9)
	2447 (78.1)	9/2447 (0.4)	61/2447 (2.5)	500 daily	172/2447 (7.0)
Ciprofloxacin	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01/2447 (2.3)	250 BID	130/2447 (5.3)	
		750 BID	122/2447 (5.0)		
				750 daily	156/374 (41.7)
Levofloxacin	374 (11.9)	0 (0)	13/374 (3.5)	500 daily	154/374 (41.2)
				250 daily	43/374 (11.5)
SMX/TMP	295 (9.4)	3/295 (1.0)	7/295 (2.4)	800/160 BID	259/295 (87.8)
Moxifloxacin	18 (0.6)	0 (0)	1/18 (5.6)	400 daily	18 (100)

- Conclusions: beta-lactams are not associated with higher mortality or increased risk of recurrence
- Strengths: large sample size, ability to follow-up, reporting of antibiotic regimens as they associated with outcomes
- Limitations: unable to assess adherence to oral antibiotics, no dosing guidance for oral antibiotics, no data collected for whether patients had indwelling catheters, limited by low event rate

Upcoming trials

- BALANCE Trial¹⁸
 - Study design: international randomized noninferiority trial
 - Intervention: 7 days vs. 14 days of antibiotic therapy for GNB
 - Primary outcome: all-cause mortality at 90 days
 - Estimated sample size: 3,622
 - Estimated completion date: March 2022
- INVEST Trial¹⁹
 - Study design: international randomized noninferiority trial
 - Intervention: early transition (within 72 hours) to FQ or SMX/TMP vs. continued IV therapy
 - Primary outcome: all-cause mortality at 30 days
 - Estimated sample size: 720
 - Estimated completion date: March 2025

Antibiotic duration summary

- Shorter courses (~7-10 days) are likely as effective as longer courses (~14 days)
- Consider extended course:
 - Immunocompromised patients
 - o Pseudomonas aeruginosa bacteremia
 - No source control or deep-seated infection
- Ideal patient for short course:
 - Monomicrobial Enterobacterales bacteremia
 - o Identifiable source with source control, if appropriate
 - Early clinical improvement

IV to PO summary

- More data needed to identify ideal total duration when switching to oral therapy
- Transition to oral after 3-5 days of IV therapy is likely appropriate

- Ideal candidate for early IV to oral transition:
 - Monomicrobial Enterobacterales bacteremia
 - o Identifiable source and source control, if appropriate
 - o Clinical improvement within 48 hours
 - No persistent bacteremia
 - Able to absorb oral medications

Oral antibiotics summary

- Higher bioavailability antibiotics, like levofloxacin, are the most effective
- More data is needed for sulfamethoxazole-trimethoprim
- Oral beta-lactams may be effective, but likely require longer durations
 - Should opt for higher bioavailability and higher doses

Assessment Questions

- 1. Which bacterium is the most common cause of Gram-negative bacteremia?
 - a. Pseudomonas aeruginosa
 - b. Escherichia coli
 - c. Klebsiella pneumoniae
 - d. Proteus mirabilis
- 2. Which oral antibiotic has the most evidence to support its use in the treatment of Gram-negative bacteremia?
 - a. Levofloxacin
 - b. Ciprofloxacin
 - c. Sulfamethoxazole/trimethoprim
 - d. Cefdinir
- 3. A patient presents with *E. coli* bacteremia secondary to cholecystitis. The culture and sensitivity report shows that the bacteria is susceptible to cefazolin, ceftriaxone, and levofloxacin. The patient has a past medical history of hyperlipidemia, hypertension, and prolonged QT syndrome. On day 2 of hospitalization, her gallbladder is removed. Her temperature returns to normal and her white blood cells are within normal limits. What is the most appropriate antibiotic regimen for this patient?
 - a. Levofloxacin 750 mg PO x 14 days
 - b. Piperacillin-tazobactam 3.375 g every 8 hours x 12 days
 - c. Ceftriaxone 2 g IV daily x 7 days, then cefdinir 300 mg PO twice a day x 7 days
 - d. Ceftriaxone 2 g IV daily x 5 days, then cephalexin 1000 mg PO Q6H x 9 days

References

- Diekema DJ, Beekmann SE, Chapin KC, et al. Epidemiology and outcome of nosocomial and communityonset bloodstream infection. J Clin Microbiol. 2003;41(8):3655-60. doi: 10.1128/JCM.41.8.3655-3660.2003.
- 2. Al-Hasan MN, Eckel-Passow JE, Baddour LM. Impact of healthcare-associated acquisition on communityonset Gram-negative bloodstream infection: a population-based study: healthcare-associated Gramnegative BSI. Eur J Clin Microbiol Infect Dis. 2012;31(6)1163-71. doi: 10.1007/s10096-011-1424-6.
- 3. Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1-45. doi: 10.1086/599376.
- Centers for Disease Control and Prevention. 2015. National action plan for combating antibioticresistant bacteria. Centers for Disease Control and Prevention, Atlanta, GA: https://www.cdc.gov/drugresistance/pdf/national_action_plan_for_combating_antiboticresistant_bacteria.pdf.
- Daneman N, Fowler RA. Shortening antibiotic durations for bacteremia. Clin Infect Dis. 2019;69(7):1099-100. doi: 10.1093/cid/ciy1057.
- 6. Li X, Liu C, Mao Z, et al. Short-course versus long-course antibiotic treatment in patients with uncomplicated gram-negative bacteremia: a systemic review and meta-analysis. J Clin Pharm Ther. 2021;46(1):173-180. doi: 10.1111/jcpt.13277.
- Nisly SA, McClain DL, Fillius AG, Davis KA. Oral antibiotics for the treatment of gram-negative bloodstream infections: a retrospective comparison of three antibiotic classes. J Glob Antimicrob Resist. 2020;20:74-77. doi: 10.1016/j.jgar.2019.07.026.
- 8. Floris L. The role of oral antibiotics in bacterial bloodstream infections. Us Pharm. 2021;46(4):17-20.
- Thaden JT, Tamma P, Doi Y, Daneman N. Variability in oral antibiotic step-down therapy in the management of Gram-negative bloodstream infections. Int J Antimicrob Agents. 2021;58(6):106451. doi: 10.1016/j.ijantimicag.2021.106451.
- 10. Tamma PD, Conley AT, Cosgrove SE, et al. Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia. JAMA Intern Med. 2019;179(3):316-323. doi: 10.1001/jamainternmed.2018.6226.
- 11. Rieger K, Bosso JA, MacVane SH, et al. Intravenous-only or intravenous transitioned to oral antimicrobials for Enterobacteriaceae-associated bacteremic urinary tract infection. Pharmacotherapy. 2017;37(11):1479-1483. doi: 10.1002/phar.2024.
- 12. Thurber KM, Arnold JR, Narayanan PP, Dierkhising RA, Sampathkumar P. Comparison of intravenous and oral definitive antibiotic regimens in hosiptalized patients with Gram-negative bacteremia from a urinary tract infection. J Glob Antimicrob Resist. 2019;18:243-248. doi: 10.1016/j.jgar.2019.03.013.
- Kutob LF, Justo JA, Bookstaver PB, et al. Effectiveness of oral antibiotics for definitive therapy of Gramnegative bloodstream infections. Int J Antimicrob Agents. 2016;48(5):498-503. doi: 10.1016/j.ijantimicag.2016.07.013.
- 14. Mogle BT, Beccari MV, Steele JM, Fazili T, Kufel WD. Clinical considerations for oral beta-lactams as stepdown therapy for Enterobacteriaceae bloodstream infections. Expert Opin Pharmacother. 2019;20(8):903-907. doi: 10.1080/14656566.2019.1594774.
- 15. Mahoney MV, Swords KE. Fluoroquinolones: friends or foes? Clin Infect Dis. 2021;73(5):857-8. doi: 10.1093/cid/ciab150.
- 16. Punjabi C, Tien V, Meng L, Deresinski S, Holubar M. Oral fluoroquinolones or trimethoprimsulfamethoxazole vs. beta-lactams as step-down therapy for Enterobacteriaceae bacteremia: systemic review and meta-analysis. Open Forum Infect Dis. 2019;6(10):ofz364. doi: 10.1093/ofid/ofz364.
- Sutton JD, Stevens VW, Chang N, et al. Oral β-Lactam antibiotics vs fluoroquinolones or trimethoprimsulfamethoxazole for definitive treatment of Enterobacterales bacteremia from a urine source. JAMA Network Open. 2020;3(10):e2020166. doi: 10.1001/jamanetworkopen.2020.20166.

- Daneman N, Rishu AH, Pinto RL, et al. Bacteremia antibiotic length actually needed for clinical effectiveness (BALANCE) randomized clinical trial: study protocol. BMJ Open. 2020;10(5):e038300. Doi: 10.1136/bmjopen-2020-038300.
- 19. Lee IR, Tong SYC, Davis JS, et al. Early oral stepdown antibiotic therapy versus continuing intravenous therapy for uncomplicated Gram-negative bacteremia (the INVEST trial): study protocol, for a multicenter, randomized controlled, open-label, phase III, non-inferiority trial. Trials. 2022;23(1):572. doi: 10.1186/213063-022-06495-3.